

Lung Cancer Update on Pathology

Zhaolin Xu, MD, FRCPC, FCAP

Professor, Dept of Pathology, Dalhousie University
Pulmonary Pathologist and Cytopathologist, QEII HSC
Senior Scientist, Beatrice Hunter Cancer Research Institute

DISCLOSURE

Grants/research support: Pfizer, Roche, Boehringer Ingelheim, Eli Lilly, Merck Canada

Speaker's bureau/honoraria: Pfizer, Roche, Boehringer Ingelheim, AstraZeneca, Merck Canada, Novartis, Bristol-Myers Squibb

Objectives:

- To review the changes in the 2015 WHO lung carcinoma classification
- To describe molecular profiling in lung cancer
- To introduce lung cancer immunotherapy with its implication in pathology

WHO Lung Adenocarcinoma

1967 1981 2004 2015

Acinar Ac

Acinar ADC
Papillary ADC
BAC
Solid with mucus

BAC Mixed Clear cell

Acinar

Papillary Signet-ring

Solid with mucin

Mucinous

(Colloid)

Fetal

Mucinous-

Adenocarcinoma in situ

Minimally invasive

Lepidic

Acinar

Papillary

Micropapillary

Solid

Invasive mucimous

Colloid

Fetal

Enteric

cystadenocarcinoma

WHO Lung Adenocarcinoma

1967 1981 2004 2015

Acinar Acinar ADC
Papillary Papillary ADC
BAC BAC

Solid with mucus

Mixed Adenocarcinoma in situ Minimally invasive

Clear cell Lepidic
Acinar Acinar

Papillary Papillary

Signet-ring Micropapillary

Solid with mucin Solid

Mucinous Invasive mucimous

(Colloid) Colloid

Fetal Fetal

Mucinous- Enteric

cystadenocarcinoma

WHO Lung Adenocarcinoma

1967 1981 2004 2015

Acinar ADC Acinar Papillary BAC BAC

Papillary ADC

Solid with mucus

Adenocarcinoma in situ **BAC** Mixed

Minimally invasive

Clear cell Lepidic **Acinar Acinar**

Papillary Papillary

Micropapillary Signet-ring

Solid with mucin Solid

Mucinous Invasive mucimous

(Colloid) Colloid

Fetal Fetal

Mucinous-Enteric

cystadenocarcinoma

Preinvasive lesions

- For adenocarcinoma
 - Atypical adenomatous hyperplasia
 - Adenocarcinoma in situ
- For squamous cell carcinoma
 - Squamous cell carcinoma in situ
- For neuroendocrine tumors
 - Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia

Minimally invasive/Lepidic

Micropapillary adenocarcinoma

Enteric adenocarcinoma

- It resembles colorectal adenocarcinoma
- The enteric pattern > 50%
- IHC may be identical to or different from colorectal adenocarcinoma (CK7, CK20, CDX2, TTF-1)
- Clinical correlation

Enteric adenocarcinoma

WHO Lung Squamous Cell Carcinoma

1967 1981 2004 2015

Epidermoid Sq Ca (epidermoid)

Spindle cell

Sq Ca Papillary Clear cell

Small cell

Basaloid

Keratinizing Sq Ca Non-keratinizing Sq Ca

Bsaloid

WHO Lung Squamous Cell Carcinoma

1967 1981 2004 2015

Epidermoid Sq Ca (epidermoid)

Spindle cell

Sq Ca Papillary Clear cell Small cell

Basaloid

Keratinizing Sq Ca
Non-keratinizing Sq Ca

Bsaloid

WHO Lung Squamous Cell Carcinoma

1967 1981 2004 2015

Epidermoid Sq Ca (epidermoid)

Spindle cell

Sq Ca Papillary Clear cell Small cell

Basaloid

Keratinizing Sq Ca Non-keratinizing Sq Ca

Bsaloid

Squamous Cell Carcinoma

WHO Large Cell Carcinoma

1967	1981	2004	2015
Large cell	Large cell	Large cell	Large cell
	Giant cell	LCNEC	
	Clear cell	Basaloid	
		Lymphoepith	elioma-like
		Clear cell	
		Rhabdoid	

WHO Large Cell Carcinoma

1967 1981 2004 2015

Large cell Large cell Large cell

Giant cell LCNEC
Clear cell Basaloid

Lymphoepithelioma-like

Clear cell Rhabdoid

Neuroendocrine tumors

- Typical carcinoid
- Atypical carcinoid
- Large cell neuroendocrine carcinoma
- Small cell carcinoma

Other/Unclassified

- Lymphoepthelioma-like carcinoma
- NUT carcinoma
 - An aggressive tumor with NUT (nuclear protein in testis) gene rearrangement t(15;19), t(15;9)
 - Sheets and nests of monomorphic small to intermediate cells
 - Abrupt foci of keratinization
 - Positive for NUT antibody, CK, P63/P40, CD34
 - May also positive for neuroendocrine markers, TTF-1

NUT carcinoma

Five-year relative survival (%)

	SITE	1975-77	1984-86	1996-98	2005-11
•	All sites	49	52	63	67
•	Lung and bronchus	12	13	15	18
•	Breast (female)	75	79	88	91
•	Prostate	68	75	97	99
•	Colon & rectum	50	58	62	66
•	Stomach	15	18	22	30
•	Pancreas	3	3	4	8
•	Leukemia	34	41	48	62
•	Melanoma	82	87	91	93
•	Non-Hodgkin lymphor	na 47	52	59	70
•	Ovary	36	38	44	46
•	Urinary bladder	72	77	79	79
•	Mesothelioma	10	7	10	9
•	Esophagus	5	10	13	20
•	Livre	3	6	9	18
•	Kidney	50	55	63	74
•	Uterus	87	82	84	83
•	Cervix	69	67	73	69

Source: Surveillance, Epidemiology, and End Results (SEER)1975-2012, National Cancer Institute.

Lung cancer survival rates

- A Localized
- B Regional node metastasis or directly beyond primary site
- C Distant metastasis
- D Unknown stage
- E Overall

Median survival 8 months, 1 year survival 30 %

Schiller JH et al. NEJM Jan. 2002

What do we learn from the history?

- Surgical treatment is effective but has limitations
- Majority of the lung cancer cases with no surgical indications at the time of diagnosis
- Chemotherapy / radiation is palliative
- Solutions
 - Prevention
 - Early detection
 - New modalities

Mutations in cancer types

Adenocarcinoma n=438

EGFR 10%, KRAS 36%, BRAF 1%, PIK3CA 1%, ALK 0.2%, HER2 0% No mutation 52%

Squamous cell carcinoma n=166

EGFR 0.6%, KRAS 1.8%, BRAF 0%, PIK3CA 2.4%, ALK 0%, HER2 0% No mutation 95%

EGFR mutations

EML4-ALK gene rearrangement

TKI Targeted therapy

EGFR mutations

- TKIs gefitinib, erlotinib, afatinib, AZD9291, CO-1686
- ORR 68%, DCR 86%, median PFS 12 m, OS 23.3 m
- 一个PFS, quality of life, safety profile, convenience
- EGFR exon 19 deletion in which afatinib vs chemotherapy median survival 31.7: 20.7 m p<0.0001

ALK gene rearrangement

- ALK TKI crizotinib, ceritinib, alectinib
- In 1st line setting vs chemotherapy: ORR 74% vs 45%, PFS 10.9 vs 7.0 m, but no OS benefit
- Phase 3 in 2nd line setting vs chemotherapy: ORR 65% vs 20%, PFS 7.7
 vs 3.0 m but no OS benefit

Atlantic Molecular Profiling Network

- Role of central lab (Atlantic Canada Molecular Oncology Centre)
- Started lung cancer molecular tests since Sept. 2012
- Multiplexed genotyping
- Tests including EGFR, KRAS, BRAF, PIK3CA, Her2 and ALK
- Volume of molecular tests
 - About 2400 cases in total (2012-2015)
 - QE II 50%, all other centers 50%
 - >90 % are for adenocarcinoma
- Reflexive testing

Case distribution

	2012	2013	2014	2015	Total	
QE II HSC	53	311	492	361	1217	(49.7%)
Atlantic (-QEII)	43	410	400	381	1234	(50.3%)
Nova Scotia	<i>56</i>	381	564	422	1423	(58.1%)
NL	4	<i>130</i>	<i>133</i>	<i>158</i>	<i>425</i>	(17.3%)
NB	<i>36</i>	191	<i>165</i>	<i>135</i>	<i>527</i>	(21.5%)
PEI	0	19	<i>30</i>	27	76	(3.1%)
Total	96	721	892	742	2451	(100%)

Consideration for lung cancer molecular profiling

- Testing all bronchogenic adenocarcinoma cases
- Testing squamous cell carcinoma if a non-smoker, young age, family history
- Neuroendocrine carcinoma almost always negative
- Multiplexed genotyping approach
- Next generation sequencing
- Reflexive testing
- Consent issue
- Sample requirement
- Turn around time (2-3 w)

Specimen requirement

- Biopsy specimen
 - Formalin fixed paraffin embedded tissue
 - Tumor size ≥ 1mm², tumor cells ≥ 10% for molecular tests
 - Formalin fixation time 8-36 h
- Cytology specimen (FNA)
 - Formalin fixative
 - Cell block
 - Enough tumor cells available
- Tissue precessing / cutting
 - Routine histology preparation
 - Consideration for possible tests
 - Consecutive cutting at once if possible

- PD1 expressed in cytotoxic T cells
- PD-L1 expressed in tumor cells
- PD1 bingding to PD-L1 inactivates cytotoxic T cells
- Blocking PD1/PD-L1 binding resumes T cell's cytotoxic function
- Either blocking PD1 or PD-L1 is effective in anticancer effect
- PD-L1 tests
 - Two diagnostic platforms
 - Five companion diagnostics

	Nivolumab	Pembrolizumab	Atezolizumab	Avelumab	Durvalumab
Antibody	28-8	22C3	SP142	Not released	SP263
Platform	Dako	Dako	Ventana	Dako	Ventana
Pharma	BMS	Merck	Roche	Pfizer/Merck Group	AstraZeneca
Cells scored	Tumor cells	Tumor cells	Tumor and immune cells	Tumor and immune cells	Tumor cells
Detailed cut-off	≥ 1% ≥ 5% ≥ 10%	< 1% 1-49% ≥ 50%	TC3 (≥ 50%) or IC3 (≥ 1)%) TC2/3 (≥ 5%) or IC2/3 (≥ 5%) TC1-3 (≥ 1%) or IC1-3 (≥ 1%) TC0 (< 1%) and IC0 (< 1%)	TC (≥ 1%) TC (≥ 5%) TC (≥ 25%) IC (≥ 10%)	25%
Health Canada	NSCLC Melanoma	NSCLC Melanoma	No	No	No
FDA	NSCLC, Malanoma Advanced RCC	NSCLC Melanoma	"Breakthrough" for bladder and lung cancer	"Breakthrough" for Merkel cell carcinoma	"Breakthrough" for bladder cancer

Blueprint proposal

- FDA, AACR, ASCO convened a workshop titled "Complexities in Personalized Medicine: Harmonizing Companion Diagnostics Across a Class of Targeted Therapies" on March 24, 2015
- An industry work group volunteered to develop a blueprint proposal
- The goal: to agree and deliver a package of information /data upon which analytic comparison of the various diagnostic assays may be conducted, potentially paving the way for post-market standardization and/or practice guideline development as appropriate.
- Blueprint Working Group Members:
 - Steven Averbuch, VP, Bristol-Myers Squibb
 - Kenneth Emancipator, Executive Medical Director, Merck Research Laboratories
 - Ian McCaffery, Head, Companion Diagnostic Development, Genentech
 - Abigail McElhinny, VP, Ventana Medical Systems Inc.
 - Dave Stanforth, Director, Companion Diagnostics, Agilent Technologies
 - Jill Walker, Executive Director, Companion Diagnostic Development, AstraZeneca
 - Doug Ward VP & General Manager, Ventana Medical Systems Inc.

Blueprint preliminary results

- Compaired 4 assays: Dako 28-8 (BMS), 22C3 (Merck), and Ventana SP263 (AstraZeneca), Ventana SP124 (Roche)
- Approximately 39 tumor biopsy samples from patients with NSCLC were assessed.
- 3 assays (Dako/BMS, Dako/Merck, and Ventana/AstraZeneca)
 had a high degree of concordance comparing each other.
- The results of this preliminary study should not alter current guidelines as indicated for each therapeutic-diagnostic validated combination pair.

Consideration for PD-L1 testing

- Testing PD-L1 for non-small cell lung cancer cases
- Along with other molecular tests if possible
- Reflexive testing approach
- Using validated companion diagnostics
 - Antibody
 - Assay protocol
 - Assessment
- Turn around time 2-3 d

Prospective cancer diagnosis

