Declaration

- D Webster
 - AbbVie honorarium for NB Provincial HCV Advisory Board
- T Hatchette
 - Research funding from GSK for influenza related vaccine effectiveness
 - AbbVie honorarium for lecture on risk of TB in the use of biologic agents

Objectives

- Objectives
 - To gain a deeper understanding of tick-borne illness
 - To recognize the local implications
 - To understand the diagnostics and local related research

Lyme Disease

- 1977
 - Steere described clustering of Lyme arthritis.
- Fall 1981
 - Burgdorfer noted spirochete in body fluid of black-legged tick identified as Lyme Dz causative agent
- May 28, 1999
 - Isolation of *Borrelia burgdorferi* from *Ixodes scapularis* removed from a bird in Nova Scotia
- Now the most common arthropod-borne illness in NA

Borrelia burgdorferi sensu lato complex

A 10	J.S.	The genospecies of <i>Borr</i> and locations	e <i>lla burgdorferi</i> and th	eir tick vectors
			Principal tick vector	Location
	6 Jac	Three pathogenic species		
(a)	20–30 μm	<i>Borrelia burgdorferi</i> sensu stricto	lxodes scapularis	Northeastern and north central US
	γ 0.2=0.5 μm		lxodes pacificus	Western US
			lxodes ricinus	Europe
(b)		Borrelia garinii	lxodes ricinus	Europe
	Protoplasm		ixodes persuicatus	Asia
		Borrelia afzelii	lxodes ricinus	Europe
	Peptidoglycan		ixodes persuicatus	Asia
	Flagella	Eight minimally pathogen	ic or nonpathogenic sp	ecies
	Outer membrane	Borrelia andersonii	ixodes dentatus	Eastern US
		Borrelia bissettii	lxodes spinipalpis	Western US
(c)	Lipoproteins		lxodes pacificus	
	••••••••••••••••••••••••••••••••••••••	Borrelia valaisiana	lxodes ricinus	Europe and Asia
		Borrelia lusitaniae	lxodes ricinus	Éurope
	Peptidoglycan	Borrelia japonica	lxodes ovatus	Japan
	Inner membrane	Borrelia tanukii	lxodes tanukii	Japan
		Borrelia turdae	lxodes turdus	Japan
	TRENDS in Molecular Medicine	Borrelia sinica	lxodes persulcatus	China

Ixodes scapularis Survey

- Millidgeville July 16, 2008
- Drag sampling
 - 29 larvae
 - 95 nymphs
- 20% of nymphs were positive for *Borrelia burgdorferi* by PCR
 - Comparable to endemic areas in Nova Scotia & Ontario

Ixodes scapularis Deer Ticks

- Usually feed on mice

- Need to have their first blood meal to get infected...then infected for life.
- Nymphs
 - Transmits most disease perhaps in part because they are so difficult to detect
- Adults
 - Feed and mate on large animals
 - Likely often already positive from nymphal phase on the mice

(a) The tick, *lxodes scapularis*, has a two-year life cycle in which it requires three blood meals. The tick is infected by its first blood meal, and can pass on the infection to a human in its second.

Mechanisms of Disease

- Bacteria undergo changes
 - OspC required for attachment in mammalian host
- Bacteria must travel from midgut to salivary glands
 - 48-72 hrs
 - As the tick fills, it seeks to rid itself of excess water by salivation back into the patient
- Ticks attached for < 24 hrs DO NOT transmit infection

(Guerau-de-Arellano, 2005 Trends Mol Med 11:114-120)

Mechanism of Disease

- Invasion helped by Tick saliva
- Uses human plasminogen to facilitate entry and spread
 - host plasmin to traverse host extracellular matrix
- After injection by the tick, spirochetes migrate outward, producing EM.

Mechanism of Disease

- Infection is then spread hematogenously to other organs.
- Organisms bind to host receptors on endothelial cells
 - P66 integrin
 - Bgp heparin sulphate
 - Fibronectin protein
 - Decorin binding proteins
- Spirochetes have particular tropism for skin, nervous tissue, and the AV node and joints.

Clinical Manifestations

Lyme Clinical Manifestations

System	Early Localized 3–30 days post bite	Early Disseminated Days-months post bite
Cardiac		AV block, myopericarditis, panacrditis
Constitutional	Flu-like Sx	Malaise, fatigue
Lymphatic	Regional Lymphadenopathy	Regional/general Lymphadenopathy
MSK	Myalgia	Migratory polyarthralgias/polyarthritis
Neurologic	Headache	Meningitis, Bell's Palsy, cranial neuritis, radiculoneuritis
Dermatologic	Erythema Migrans	Secondary annular legions

Asymptomatic infection can also occur.

Erythema Migrans

- Typically within 7-14d (3-30) of bite
- Should be ay least 5 cm for secure diagnosis
- Usually expands in size over 24-48 hours
- Secondary lesions may be < 5 cm
- Can vary in appearance
 - oval, round
 - \pm cental clearing
 - \pm partially purpuric
 - \pm central vesicles/pustules

July 2008

- 40 yo female from Millidgeville
- Previously healthy
- Develops an evolving bulls eye rash

Treated with 14 days of doxycycline 100 mg PO bid with resolution of rash & illness and no subsequent sequelae.

- August 23, 2014 23 yo female from Millidgeville
 - 2 day hx of facial droop
 - No fever
 - No headache
 - No meningismus
 - Doxycycline x 21 days
 - Lyme serology reactive
 - Facial palsy resolved

Early Neurologic Lyme Disease

- Peripheral Nervous System
 - Radiculopathy
 - Cranial neuropathy
 - Mononeuritis monoplex
- Central Nervous System
 - Lymphocytic meningitis
 - Encephalomyelitis

Late Lyme Disease

- Neurologic (uncommon in NA)
 - Encephalomyelitis
 - Peripheral neuropathy
 - Encephalopathy
- Rheumotologic
 - Monoarticular or oligoarticular arthritis
 - Typically the knee
 - Often intermittent if untreated
 - Inflammatory synovial fluid

Local Epidemiology

Reported cases of Lyme disease (2002-2013), Nova Scotia

Percentage of LD cases in NS with symptom complex by year, 2008-2013

Lyme Disease in Increasing Recognized in NS

Confirmed - EM or other clinical illness and positive serology (2002-2007); previous definition plus exposure to endemic area (2008-present)

Probable - Clinician-diagnosed erythema migrans and exposure to endemic area (2008-present)

Probable - Clinical illness and positive serology (2008-present)

*Years when new LD endemic areas were declared.

NS Serosurvey

		Laboratory		Seroprevalen	ce estimates	
	Total	Zeus EIA				
	screening	positive or	C6 positive	IgG WB	IgG WB	
	(Zeus EIA)	indeterm	or equivocal	borderline	borderline	C6 ELISA
	n	n (%)	n (%)	n (%)		
DHA1	191	21 (11.0)	1 (0.5)	0	0 (0-1.9)	0.52 (0-2.9)
DHA 2	199	19 (9.5)	2 (1.0)	0	0 (0-1.8)	1.01 (0.1-3.6)
DHA 3	261	42 (16.1)	2 (0.8)	0	0 (0-1.4)	0.77 (0.1-2.7)
DHA 4	120	12 (10.0)	1 (0.8)	1 (0.8)	0.83 (0-4.6)	0.83 (0-4.6)
DHA 5	44	1 (2.3)	1 (2.3)	0	0 (0-8.0)	2.27 (0.1-12.0)
DHA 6	74	3 (4.1)	0	0	0 (0-4.9)	0 (0-4.9)
DHA 7	72	3 (4.2)	0	0	0 (0-5.0)	0 (0-5.0)
DHA 8	201	22 (10.9)	1 (0.5)	0	0 (0-1.8)	0.5 (0-2.7)
DHA 9 /IWK	693	92 (13.3)	9 (1.3)	1 (0.1)	0.14 (0-0.8)	1.3 (0.6-2.5)
Nova Scotia*	1855	215 (11.6)	17 (0.9)	2 (0.1)	0.14 (0.02-0.51)	0.98 (0.56-1.60)

*Provincial seroprevalence estimates weighted by age, sex, and DHA, accounting for oversampling in DHAs 1, 2, and 3.

Diagnostics

Lyme Diagnosis

- Serology
 - Two tier testing
 - Sensitive EIA whole cell or C6 peptide
 - Western blot
 - Culture
 - Poor sensitivity, some methods non reproducible
 - PCR
 - Only real use is in persistent arthritis

Specific Confirmatory Test

IgG Western blot

Performance of Serology Depends On Disease Stage Poor sensitivity in Early Infection

Disease State	Whole Cell EIA	+IgM WB	+ IgG WB	Two Teir Testina
Acute (EM)	33-49%	43-44%	0-13%	29-40%
(EM) Convalesce nt after antibiotics	76-86%	75-84%	15-21%	29-78%
Neurological involvement	79%	80%	64-72%	87%
Arthritis	100%	16%	96-100%	97%

(Aguero-Rosenfeld et al., 2005 CMR 18:484-509)

Prospective Study of Serologic Tests for Lyme Disease

Allen C. Steere, Gail McHugh, Nitin Damle, and Vijay K. Sikand

Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston

- 1999-2001 East Lyme Connecticut
- 76 patients who had culture confirmed EM
- 147 with late Lyme or other illnesses
 - objective clinical findings and positive serology
- PLD (Post LD or Chronic LD)
 - pain or neurocognifive or fatigue < 6 months after appropriate ABX Rx
- Controls

Testing is Accurate for Late Lyme

Disease State	C6 EIA	EIA +	EIA +	EIA &IgM	
		IgM WB	lgG WB	or IgG WB	
Acute (stage 1)	19-38%	11-38%	6-15%	17-43%	
Convalescent	47-63%	39-70%	17-20%	53-75%	
after antibiotics					
Disseminated	100%	85%	85%	100%	
infection (acute					
neurologic or					
arthritis) (stage 2)					
Persistent	100%	23%	100%	100%	
infection (stage 3)					

CID 2008 47:188-195

Testing is Accurate for Late Lyme

Disease State	Cr		EIA +	EIA &IgM	
	2/13 had	facial	IgG WB	or IgG WB	
Acute (stage 1)	nerve pals	y only!	6-15%	17-43%	
Convalescent	4	%	17-20%	53-75%	
after antibiotics			\frown		
Disseminated	100%	85%	85%	100%	
infection (acute					
neurologic or					
arthritis) (stage 2)					
Persistent	100%	23%	100%	100%	
infection (stage 3)					

CID 2008 47:188-195

Testing is Accurate for Late Lyme

Disease State	C6 EIA	EIA + IgM WB	EIA + IgG WB	EIA &IgM or IgG WB
Chronic LD (n=14)	43%	50%	36%	71%
Not Lyme (n=75) (CFS, FM,MS,RA)	1%	0%	0%	0%
Healthy (endemic area) (n=86)	5%	1%	1%	2%
Healthy (non- endemic area) (n=50)	2%	0%	0%	0%

CID 2008 47:188-195

Diagnosis of Re-infection Is A Challenge

- Re-infection identified in 5 prospective studies of Lyme disease in the US
 - Rate of re-infection/year 1.2 3.1%
 - Usually EM at a different site
- No pattern has been identified to differentiate re-infection from previous infections
- Serology can persist for decades
- Seroconversion or a 4x rise in IFA titre could indicate re-infection

Nadelman and Wormser, 2007 CID 45:1032-1038 Krause et al., 2006 AJTMH 75:1090-1094

IGeneX Interpretive Criteria

	1	2	3	4	5	6	7	8		
110-KDa- 84-KDa- 47-KDa-			ALL DEPARTY -		_	-		A LOT DE DESCRIPTION OF DESCRIPTION	94-K 66-K 60-K	G-RESULT CDC 18 kDa 22 kDa CDC **23-25 kDa CDC **23-25 kDa CDC 28 kDa CDC 30 kDa **31 kDa **34 kDa
33-KDa			=				-	i	- 34-H - 31-H	COC ** 39 kDa IND COC ** 41 kDa ++
24-KDa—								-	- 22-k	CPC 58 kDa + CPC 56 kDa +
16-KDa—		,						1		73 kDa - Chc **83-93 kDa -

Caveats to Lyme

CAUTION

- Patients with symptoms of greater than 4 weeks duration should have IgG
 - Except if treated early in the course of their illness
- IgM can persist for years
- IgM can be false positive
- Early treatment may not seroconvert

Limitations of Serology

- False Positives (Specificity):
 - Cross-reacting antibodies
 - Other spirochetal disease, viral illnesses and autoimmune diseases (SLE, RA)
 - 5% general population may test positive for LD by ELISA!
- False Negatives (Sensitivity):
 - Slow antibody response
 - Early antibiotic therapy can abort seroconversion!
 - Unclear about sensitivity for other "strains" of B. burgdorferi

Novel Approach to Tick Identification

MALDI-TOF & Tick Identification

- Matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectroscopy uses mainly ribosomal proteins
- Compares the mass peaks achieved by test strains to those of known strains
- Organism identification within 20 minutes of starting the process
- The resultant identification is meant to be robust, as it relies on high abundance proteins
- Potential use for tick identification

MALDI-TOF Principle

Broad Applicability of MALDI-TOF MS Profiling

Filamentous fungi, yeast, gram+ and gram- bacteria

Local Study

MALDI-TOF MS appears to be an effective tool for the rapid identification of tick vectors that requires no previous expertise in tick identification

RELATIVE ABUNDANCE OF TICK SPECIES IN NEW BRUNSWICK

1 January 2008 to 1 September 2009

Rabbit and Moose Ticks are likely most abundant

MALDI-TOF Mass Spectrometry for the Rapid Identification of Tick Vectors

Amina Yssouf et al Journal Clinical Microbiology 2013,51(2):522-528

Six species were tested, using the legs, identification verified by a molecular platform

Our Study

- Certain areas in New Brunswick are endemic for Lyme disease
 - Millidgeville area of Saint John
 - Grand Manan Island
- Objective:
 - to speciate ticks
 - to asses the ability of MALDI to distinguish
 - between ticks infected with
 - B. burgdorferi from those that are not

Other Emerging Tick Borne Illness In Atlantic Canada

- August 2013
 - Aseptic meningitis
- September 2013
 - Re-admitted with weakness
 - Neurology & ID consults
 - Multiple tests ordered
 - Lyme serology \rightarrow non-reactive
 - Anaplasma titre \rightarrow reactive

titre 1:64

Human Granulocytic Anaplasmosis

- Causative agent of HGA is Anaplasma phagocytophilum
- First described in 1994, originally called HE
 - Ehrlichia
 phagocytophilum
- Obligate intracellular rickettsia
- Transmitted by Ixodes
 scapularis

HGA Epidemiology

Incidence in USA of 1.6 per million (2001-2002), and increasing

CDC.gov

HGA Epidemiology Overlaps Lyme Endemic Areas

Anaplasmosis Incidence, 2010

- Highest incidence
 - RI (36.5 cases/million)
 - Minnesota (3.9-12.3)
 - Connecticut (8.1-15.9)
 - Wisconsin (8.8-9.5)
 - NY (2.3-2.7)
 - Maryland (1.6)

Diagnosis

- Not easily cultured
- Five accepted means of diagnosis:
 - Serology: sensitivity 94-100% (2-3 weeks after onset)
 - Buffy coat examination: morulae found in neutrophils of 20-80% of pts
 - PCR: not standardized: HGA sensitivity 60-70%
 - Immunohistochemical stains: bone marrow tissue, autopsy tissue
 - Clinical: most sensitive, recognition of endemic/epidemiologic risk factors, clinical presentation, and laboratory abnormalities

- August 11, 2014
 - 43 yo female goes rasberry picking
 - The next day she finds a tick on her neck

PROCEDURE: Worm, Arthropod ID SOURCE: Variable

COLLECTED: 08/12/2014 08:00 STARTED: 08/13/2014 13:21 ACCESSION: MB-14-069852

*** FINAL REPORT ***

Final ReportVerified:10/24/2014 13:55Tick for Identification: Ixodes murisTick is Borrelia burgdrferi PCR: NegativeTick is Anaplasma phagocytophilum PCR: NegativeTick is Babesia microti PCR: Positive

Tick is Borrelia carolinensis: Positive B. carolinensis has not been reoprted to infect or cause disease in humans. In the unlikely event you experience any symptoms please consult your physician Reference Lab: Canadian Science Centre for Human and Animal Health, Winnipeg

Babesiosis

- Causative organism
 Babesia spp
- Regional pathogen
 Babesia microti
- Transmitted by *Ixodes scapularis*
- Discovered in 1888 by Victor Babes
- Originally seen in erythrocytes of cattle and sheep

Epidemiology

N Engl J Med 366:2397

N Engl J Med 366:2397

Presentation

- Fever, mild splenomegaly and hepatomegaly
- Haemolysis, thrombocytopenia, transaminitis
- Parasitemia seen on direct smear
- Most infections are self-limited or respond anti-infectives
 - Atovaquone, azithromycin, clindamycin, quinine

Diagnosis

- Microscopy
 - Definitive diagnosis on thin blood smear (multiple smears, multiple days)
- PCR
 - 18S rRNA has higher sensitivty than blood smear
 - RT-PCR can detect 0.0001% parasitemia
- Serology
 - Indirect immunofluorescent antibody testing (IFAT)
 - ABs may persist for years after infection is cleared

41 yo male from Quispamsis

- July 4 found a tick in his left groin
- July 9 onset of fevers & drenching sweats
- July 12, 2014
 - Presents to SJRH with fever 39.1 $^{\circ}\mathrm{C}$
 - ALT 116 & bilirubin 36
 - Ceftriaxone 1g IV q24h
- July 13 afebrile and requesting D/C home
 Cefuroxime 500 mg PO bid x 14 days

July 11 - tick submitted for identification

PROCEDURE: Worm, Arthropod ID SOURCE: Variable

COLLECTED: 07/11/2014 18:46 STARTED: 07/11/2014 20:18 ACCESSION: MB-14-060281

*** AMENDED REPORT ***

Supplementary Report

Verified:10/03/2014 10:49

The Tick Submission Form has been received.

Tick for Identification: Ixodes scapularis Tick is Borrelia burgdorferi PCR: Negative Tick is Borrelia miyamoto PCR: Positive Tick is Anaplasma phagocytophilum PCR: Negative Tick is Babesia microti PCR: Negative Reference Lab: Canadian Science Centre for Human and Animal Health, Winnipeg

BRIEF REPORT

Meningoencephalitis from *Borrelia miyamotoi* in an Immunocompromised Patient

Joseph L. Gugliotta, M.D., Heidi K. Goethert, Sc.D., Victor P. Berardi, B.S., and Sam R. Telford III, Sc.D.

SUMMARY

Ixodes ticks serve as vectors for *Borrelia burgdorferi*, the agent of Lyme disease. Globally, these ticks often concurrently harbor *B. miyamotoi*, a spirochete that is classified within the relapsing-fever group of spirochetes. Although humans presumably are exposed to *B. miyamotoi*, there are limited data suggesting disease attributable to it. We report a case of progressive mental deterioration in an older, immunocompromised patient, and even though Koch's postulates were not met, we posit *B. miyamotoi* as the cause, owing to its direct detection in cerebrospinal fluid (CSF) with the use of microscopy and a polymerase-chain-reaction (PCR) assay. It is likely that *B. miyamotoi* is an underrecognized cause of disease, especially in sites where Lyme disease is endemic.

Guliotta. NEJM, 2013.

Borrelia miyamotoi in New Brunswick

Summary of blacklegged ticks infected or co-infected with B. miyamotoi									
Yr collected	Identifier	Stage	Host	Province	Locality				
2014			Human	NB	St. Jacques				
2013			Dog	NB	Quispamsis				
2012	3323	Female	Dog	NB	Le-Goulet				
2012	4985	Female	Cat and Dog	NB	Grand Manan				
2012	4990	Female	Cat and Dog	NB	Grand Manan				
2010	2554	Female	Human	NB	Precise location not available				

2 Additional human cases this summer 2014 – one with febrile illness.

R Lindsay & J Goltz. Unpublished data.

Conclusions

- Increasing rates of tick-borne illness being observed in NB & NS
- Diagnostics via sensitive EIA and specific Western blot
- Potential for MALDI-TOF MS for tick identification and identifying infected ticks
- More than just B. burgdorferi to be aware of locally

Thanks

	TICK INFORMATION								
es: Ity of Aquisition: :: rgement:		Ixodes scapularis Quispamsis, NB Female Unfed, attached	Date Collected: Host: No of Ticks submitted:	2013/10/ Human 3					
		RESU	JLTS						
	Test(s)		Result(s)						
	Borrelia bur	gdorferi PCR	Positive						
	Anaplasma	phagocytophilum PCR	Positive						
	Babesia mic	roti PCR	Positive						
	Babesia mio	roti PCR	Positive						